

Dell PowerEdge: Getting Started with Redfish
Ansible Modules
August 2022

H19306

White Paper

Abstract

This document provides guidelines for getting started with Ansible and
Redfish Ansible modules for PowerEdge systems. Techniques,
practices, and the Ansible foundation described in this paper apply to
other Dell Ansible modules and Ansible in general.

Dell Technologies

Copyright

2 Dell PowerEdge: Getting Started with Redfish Ansible Modules

The information in this publication is provided as is. Dell Inc. makes no representations or warranties of any kind with respect
to the information in this publication and specifically disclaims implied warranties of merchantability or fitness for a particular
purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.

Copyright © 2022 Dell Inc. or its subsidiaries. All Rights Reserved. Dell Technologies, Dell, EMC, Dell EMC, and other
trademarks are trademarks of Dell Inc. or its subsidiaries. Intel, the Intel logo, the Intel Inside logo, and Xeon are trademarks
of Intel Corporation in the U.S. and/or other countries. Other trademarks may be trademarks of their respective owners.
Published in the USA in August 2022 H19306.

Dell Inc. believes the information in this document is accurate as of its publication date. The information is subject to change
without notice.

 Contents

3 Dell PowerEdge: Getting Started with Redfish Ansible Modules

Contents

Executive summary ... 4

Introduction to Ansible ... 5

Getting started with Ansible ... 13

Managing PowerEdge servers through Redfish with Ansible .. 16

Getting help ... 36

Summary .. 37

References ... 38

Executive summary

4 Dell PowerEdge: Getting Started with Redfish Ansible Modules

Executive summary

Infrastructure as Code (IaC) is a popular paradigm for managing IT infrastructures that range

from small to extremely large and from simple to complex. The promise of IaC is to use code as

a way of creating repeatable tasks with repeatable results across a wide variety of IT

components. To deliver on its promises, IaC uses tools such as Puppet, Chef, Terraform, and

Ansible. This white paper focuses on Ansible because it is widely used, requires no specific

agents, and can be installed on a wide variety of platforms.

Ansible is a popular open-source software solution for configuration management and

automation of IT resources. Many vendors, including Dell Technologies, provide Ansible

collections and modules to enable the management of your server, networking, and storage

hardware. You also can combine functionalities from multiple vendors to complement Dell

Technologies products, provide end-to-end configuration management, and deliver IaC.

This paper introduces Ansible and provides guidelines and examples for how to make the best

use of the Dell Ansible modules for the Dell PowerEdge platform. The information in this paper

is additional to the product guides and release notes. As module functionality is updated

periodically, we will update this paper accordingly.

This white paper is intended for storage administrators, site reliability engineers, automation

engineers, and DevOps engineers who want information about how to get started with Ansible,

integrate PowerEdge servers into their infrastructure, and manage resources as code using

Ansible. It is assumed that readers are familiar with PowerEdge architecture.

Date Description

August 2022 Initial release

Dell Technologies and the authors of this document welcome your feedback on this document.

Contact the Dell Technologies team by email.

Authors: Bertrand Sirodot

Note: For links to other documentation for this topic, see References.

Overview

Audience

Revisions

We value your

feedback

mailto:tech.doc.feedback@dell.com?subject=Dell%20PowerEdge:%20Getting%20Started%20with%20Redfish%20Ansible%20Modules%20(H19306)

 Introduction to Ansible

5 Dell PowerEdge: Getting Started with Redfish Ansible Modules

Introduction to Ansible

Ansible is an open-source-provisioning, configuration-management, and application-deployment

tool that enables IaC. Red Hat acquired Ansible in October 2015.

Ansible is popular for two primary reasons:

• It uses the prevalent YAML language to create human-readable templates with which

users can program repetitive tasks to occur automatically, without the need to learn an

advanced language.

• It does not require any agent or specific infrastructure; instead, it uses standard tools

such as SSH to run its programs.

Both attributes make it easy to deploy and get started with Ansible.

In Ansible terminology, a list of tasks or scripts is called a playbook. A playbook describes the

target end state of the configuration of the IT component being managed by Ansible. Playbooks

are written in YAML and offer a repeatable, reusable, and simple configuration-management

and multi-machine deployment system. Ansible does not use an internal database to store the

content of the playbooks, making it easy to back them up. Most organizations store their

playbooks within their version control tool.

Ansible is an extensible framework where the open-source community and vendors can create

modules, also known as task plug-ins or library plug-ins. The plug-ins are reusable, stand-alone

scripts that can be used by the Ansible API or by Ansible Playbooks. Modules are focused on

offering functionalities for a specific configuration element. For instance, Ansible supports a

user module, which allows playbooks to manage user configuration needs, such as changing

passwords, creating users, changing a user’s group ownership, or even automatically

generating SSH keys for the user.

Modules pertaining to the same component can be aggregated in a collection. Dell

Technologies offers various collections for each of its products, such as PowerEdge,

PowerMax, PowerFlex, and so on. Ansible collections are available on the Ansible Galaxy

website: https://galaxy.ansible.com. The Dell Technologies collections are available at

https://galaxy.ansible.com/dellemc.

You can deploy Ansible in multiple ways, depending on your needs. In the following sections,

we review a few of the most popular installation approaches. Later, we deploy Ansible as a

Python package. This method offers the benefit of not requiring the installation of specific

software, which makes it a great option for those who want to test Ansible. It is installed in the

same way as any Python package, using the Python package installer, pip.

Note: This paper assumes some level of familiarity with Python and pip.

Overview

https://galaxy.ansible.com/
https://galaxy.ansible.com/dellemc

Introduction to Ansible

6 Dell PowerEdge: Getting Started with Redfish Ansible Modules

To manage a PowerEdge server with Ansible, you need the following components, as shown in

Figure 1:

• Integrated Dell Remote Access Controller (iDRAC)—iDRAC is native to PowerEdge

and provides the Redfish API interface for managing PowerEdge servers.

• Authorized user for iDRAC—To prevent unauthorized access to the iDRAC, Redfish

requires authentication before Ansible performs any action. Ansible employs the

authorized user while performing actions against the iDRAC.

• Linux server—This server can be either a virtual or physical machine, with Python 3.x or

later installed. For exact versions, see the Ansible release notes. Currently, Ansible can

manage Windows hosts but cannot be installed on Windows.

• Dell OpenManage Python SDK—This SDK is a Python library that automates the life

cycle management of PowerEdge servers and modular infrastructure. It is available on

Dell GitHub at https://github.com/dell/omsdk.

• Dell OpenManage Ansible collection—This Dell Ansible collection contains modules to

automate and orchestrate the deployment and update of PowerEdge servers and

modular infrastructure. It is available on Ansible Galaxy at

https://galaxy.ansible.com/dellemc/openmanage.

Figure 1. Components for managing PowerEdge server with Ansible

Ansible Galaxy is an online hosted repository where vendors and community members can

upload content for extending Ansible base functionality to provide a simple method for

delivering Ansible content.

All officially supported Dell modules are packaged as collections and are available on the

Ansible Galaxy site at https://galaxy.Ansible.com/dellemc.

Requirements

for using Ansible

with PowerEdge

Obtaining official

Dell content for

Ansible

https://github.com/dell/omsdk
https://galaxy.ansible.com/dellemc/openmanage
https://galaxy.ansible.com/dellemc

 Introduction to Ansible

7 Dell PowerEdge: Getting Started with Redfish Ansible Modules

There are multiple approaches to installing Ansible in your environment. A few of the most

popular options are:

• Operating system native packages

Ansible is available as a native package that can be installed onto various operating

systems. Ansible cannot be installed on Windows but can manage Windows hosts. To

run Ansible on Windows, you can use Windows Subsystem for Linux (WSL), which

allows you to run a Linux environment inside Windows.

Note: How to use WSL is outside the scope of this paper.

• Basic install on a Linux server with Python and Ansible Python using Python package

installer (pip)

• Python virtual environments

This paper focuses on installation using Python virtual environments. That option is the easiest

to use when testing Ansible because uninstalling Python is as easy as removing the directory

for the virtual environment.

To install Ansible on a Linux server in a directory called PEAnsibleRedfish, follow these

steps. For examples, see Figure 2, Figure 3, Figure 4, and Figure 5.

Note: If you do not want to use virtual environments, you can skip steps 1 and 2. If you later decide to

use virtual environments, you can activate the virtual environment upon login with an environment

variable in the user’s .bash_profile.

1. Create the Python virtual environment (venv) in the following directory:

PEAnsibleRedfish: python3 -m venv PEAnsibleRedfish

2. Activate the Python venv:

source ./PEAnsibleRedFish/bin/activate

3. Install pip, the Python package manager:

python3 -m pip install --upgrade pip

4. Install Python Wheel:

pip install wheel setuptools

5. Install the OpenManage Python SDK:

pip install omsdk

6. Install Ansible:

pip install Ansible

7. Install Ansible Lint:

pip install Ansible-lint

8. Install OpenManage collection:

ansible-galaxy collection install dellemc.openmanage

Ansible

installation

methods

Installing

Ansible and

OpenManage

collection in a

virtual

environment

Introduction to Ansible

8 Dell PowerEdge: Getting Started with Redfish Ansible Modules

Figure 2. Preparing your virtual environment

Figure 3. Installing omsdk package

 Introduction to Ansible

9 Dell PowerEdge: Getting Started with Redfish Ansible Modules

Figure 4. Installing Ansible

Figure 5. Installing Ansible-lint

Introduction to Ansible

10 Dell PowerEdge: Getting Started with Redfish Ansible Modules

Ansible playbooks are usually forward-compatible; however, retesting your playbooks with the

latest software versions before releasing them to production is always advisable. Adopting

continuous integration/continuous development (CI/CD) pipeline methodologies and tools can

be useful and is generally recommended.

To upgrade an existing environment, create a new virtual environment and install the latest

OpenManage SDK and OpenManage Ansible collection to this environment.

With multiple virtual environments configured, you can run playbooks in a validated virtual

environment by switching environments. To make the switch, run the source

./<environmentname>/bin/activate command.

This paper uses the following basic Ansible commands:

• Ansible-galaxy—Performs various role and collection-related operations, including

searching the Ansible Galaxy site for collections and installing them on your system.

• Ansible-doc—Provides documentation for usage and supported functionality of

Ansible modules. Useful for any storage administrator, site reliability engineer, or Ansible

administrator. The EXAMPLES section is particularly helpful.

• Ansible-playbook—Runs Ansible playbooks.

• Ansible-vault—Encrypts or decrypts files used by Ansible that contain sensitive data.

• Ansible-lint—Validates Ansible playbooks for syntax.

Ansible Galaxy is the Ansible equivalent of an app store. Ansible Galaxy is an online hosted

repository where vendors and Ansible community members can upload content for extending

Ansible base functionality. Ansible Galaxy provides a simple method for delivering Ansible

content. Users can package and distribute playbooks, roles, modules, and plug-ins.

All officially supported Dell modules are packaged and distributed in Ansible collections, which

are available on the Ansible Galaxy site at https://galaxy.Ansible.com/dellemc.

Ansible is an end-state-driven automation engine that uses a markup language to describe the

end state of the environments it creates or manipulates. Ansible playbooks use a markup

language called YAML.

YAML, which is an acronym for Yet Another Markup Language, is descriptive as well as easy to

read and understand. Interacting with YAML requires little or no programming skills. Some

users might decide to implement conditionals checks once they become more familiar with

YAML and Ansible constructs. YAML files can have the extension .yml or .yaml, depending on

preference. The examples in this paper use the shorter .yml extension.

When working with YAML, you can use your favorite text editor or integrated development

environment (IDE). If you are storing your configuration offerings in source control

management, an IDE is recommended for checking versions in and out. IDEs also make

variable tracking simpler and take care of indentation once the file type is specified as YAML.

Upgrading your

Ansible

environment

Basic Ansible

commands

Ansible Galaxy

YAML—Yet

Another Markup

Language

https://galaxy.ansible.com/dellemc

 Introduction to Ansible

11 Dell PowerEdge: Getting Started with Redfish Ansible Modules

When working with YAML, remember these factors:

• Everything specified in YAML is a list. A new list starts with a keyword followed by a

colon (:). New list items are indicated with a dash (–) on the next line, indented by two

spaces. Sub-items for a list value are indented on a new line by two spaces.

• Spaces are important. Working with YAML is easier if you set your editor to two spaces

per tab.

• You can save time by using VIM. You can update your .vimrc file with the following

options to work well with YAML and auto-indent the YAML code:

autocmd FileType yaml setlocal ts=2 sts=2 sw=2 expandtab

When pasting in VIM, you might want to use the F2 option to switch paste mode on and

off to avoid incorrect formatting of indents.

• Variables notation requires variables to be enclosed in curly brackets and double

quotes, for example, "{{ metro_dr_array }}." Good practice is to add a space

before and after the variable name to make your file easier to read. Ansible-lint

would fail without white spaces around the variable.

An Ansible playbook is a blueprint of automation tasks that run with limited or no human

involvement. Playbooks are run on a set, group, or classification of hosts, which together make

up an Ansible inventory. The following figure shows a basic playbook.

Figure 6. A basic playbook

A playbook usually includes the keywords described in the following table:

What is a

playbook?

Introduction to Ansible

12 Dell PowerEdge: Getting Started with Redfish Ansible Modules

Table 1. Playbook keywords

Keyword Description

collections A keyword that imports any collections. Using this keyword to import the
dellemc.openmanage namespace tells the playbook where to look for
PowerEdge modules.

connection A keyword that is usually set to local because the Ansible server runs the

REST calls.

gather_facts An optional keyword and one that is not necessary for running Dell
modules. Gathering information about the configuration of the local host is
unnecessary because the information will not be used in the playbook.
Setting this keyword to no reduces runtime slightly,

hosts A keyword that Identifies the host on which the playbook is run. Because
Dell playbooks use REST APIs, this keyword is usually set to localhost,

and the Ansible server runs the REST calls.

input A special keyword known as an anchor, which is used to reference multiple
values with a single variable referenced by &uni_connection_vars. Figure 6
shows credentials and connection variables short-handed with this
technique. Subsequent tasks can refer to the grouped variables using the
<<:*uni_connection_vars anchor.

name An identifier for the playbook, which ideally gives a good indication of what
the playbook is designed to accomplish. Names can be dynamic and
include variables, as in the example, so runtime changes according to the
values the playbook is run with.

vars A keyword that details any variables that the playbook needs to run. This
keyword is optional because variables can also be passed in at runtime on
the command line.

vars_files An optional keyword that details any variable files that provide information
for the playbook to run.

Best Practice: Because the YAML file works like a scripting language, you can use comment

lines as often as necessary. These lines are ignored during parsing. Comment lines start with

the # symbol, which is followed by some text. Comment lines can be used to explain sections of

a playbook to make them more easily understandable to others.

Ansible is a declarative state engine at its core. Through tasks, playbooks describe the state to

which the system is to be configured. The logic behind the modules that are run by the playbook

tasks works to achieve the specified state.

A key principle of Ansible that makes it different from scripting is the concept of Idempotency.

The official Ansible documentation describes Idempotency as follows: “An operation is

idempotent if the result of performing it once is exactly the same as the result of performing it

repeatedly without any intervening actions.” Thus, if you run a playbook with the same set of

inputs, you should not expect it to make any changes on the system. Dell modules for

OpenManage (and other Dell Technologies products) are written to conform with this type of

idempotency.

Idempotency and

Ansible

https://docs.ansible.com/ansible/latest/reference_appendices/glossary.html#:~:text=An%20operation%20is%20idempotent%20if%20the%20result%20of%20performing%20it%20once%20is%20exactly%20the%20same%20as%20the%20result%20of%20performing%20it%20repeatedly%20without%20any%20intervening%20actions

 Getting started with Ansible

13 Dell PowerEdge: Getting Started with Redfish Ansible Modules

Getting started with Ansible

A significant part of Ansible’s popularity is because it does not need a dedicated client or agent

to perform its tasks. Instead, Ansible relies on default tools, primarily SSH, to run its tasks, so

some configuration must be done to ensure that Ansible can access the right tool in the right

way.

In the following sections, we look at how to properly configure the destination hosts for Ansible

so that Ansible can perform actions on them. Most of these configurations are not necessary if

you only want to run playbooks to perform actions using Redfish. However, we include the

information for reference or for your use if you want Ansible to manage both the hardware and

software layer on your server. If you only want to run playbooks for Redfish, proceed to Building

your inventory file.

SSH is a critical piece in any Ansible-managed and controlled infrastructure because Ansible

relies on it to perform actions on the hosts. Not using dedicated clients is what makes Ansible

easy to use and implement, but it creates the requirement of having a robust and properly

configured SSH infrastructure.

The biggest part of getting SSH ready for Ansible is enabling key-based authentication, which

allows Ansible to access the remote hosts without the need for a password being entered.

If you are going to use Ansible solely to manage PowerEdge iDRACs through Redfish, you do

not have to set up SSH. Redfish uses its own authentication method and does not rely on SSH.

However, you must set up SSH key-based authentication to run playbooks against any

Windows or Linux server.

In SSH, the source and the destination of the SSH session conduct key-based authentication by

sharing public and private keys to authenticate the session, instead of using a password.

Enable key-based authentication from the server, workstation, or desktop from which you will

run Ansible by following these steps:

1. If you are going to use a dedicated user, such as ansible, to run the playbooks, su to

that user.

2. Create your private/public key pair by running ssh-keygen, and then follow the

prompts.

We recommend that you enter a passphrase when prompted. The passphrase protects

the private key and limits the possibilities of that private key being compromised.

3. Copy your public key to each server you want to run Ansible playbooks against by

running the command ssh-copy-id <username>@<remote host>.

This command copies the public key to <remote host> and establishes key-based

authentication for user <username>.

After you have set up key-based authentication for SSH, the next part of getting ready to run

Ansible playbooks is to define an inventory file. In Ansible, the inventory file contains the list of

hosts against which playbooks can be run. The challenge is that certain playbooks might only

be run against specific hosts and not every host, so how is that achieved within the inventory

file?

Introduction

Setting up SSH

for Ansible

Building your

inventory file

Getting started with Ansible

14 Dell PowerEdge: Getting Started with Redfish Ansible Modules

Fortunately, the Ansible inventory file supports the creation of host groups with associated

variables. Ansible supports two formats for its inventory file: INI and YAML.

Here is an example of an inventory file in INI format:

And here is the same inventory file in YAML format:

The inventory file format is flexible enough that a host can be part of multiple groups. This

capability allows system administrators to build groups based on application, location, or

deployment environment (dev, test, prod, and so on). Hosts can be a member of all the groups

simultaneously.

Groups can also be defined as a hierarchy, where a group can be made of one or more groups.

For instance, the group awesomeapp can be made of groups webservers, databases, and

applications. For example:

[awesomeapp]

webservers

databases

applications

with group webservers defined as follows:

[webservers]

webserver01

webserver02

 Getting started with Ansible

15 Dell PowerEdge: Getting Started with Redfish Ansible Modules

Similarly, for groups databases and applications:

[databases]

dbsrv01

dbsrv02

[applications]

appsrv01

appsrv02

Hosts can also be defined using ranges. For instance, the following example defines a group

called webservers, containing all the servers called webserver01 to webserver50:

[webservers]

webserver[01:50]

Two types of variables can be in the inventory file: host variables and group variables. Host

variables allow customization for a specific host, whereas group variables allow the definition of

variables to be applied to every host in the group.

The following example shows the definition of a host variable:

[webservers]

webserver01 http_port=80

webserver02 http_port=8080

This example allows a system administrator to customize the port for HTTP requests for each

host. For a host where SSH is running on a port other than port 22, it is possible to specify

which port Ansible should use by defining the host like this: webserver01:8022. This

specification instructs Ansible to use port 8022 to connect to this web server.

You can also define group-level variables, as follows:

[webservers:vars]

ntp_server=ntpserver.acme.com

username=username

password=password

These variables are used for all servers in the webservers group. With iDRAC, you can define

the username and password to be used to connect to iDRAC, as previously shown. Because

this method poses some security risk, ensure that the permissions on the inventory file are as

closed as possible.

Ansible defines a multitude of variables for the inventory file, which we do not fully address in

this paper. For more information about this topic, see the following Ansible documentation:

https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html#inventory-basics-

formats-hosts-and-groups

Now that we have established key-based authentication for SSH and defined the inventory file,
we can safely test that Ansible is working. To do that, we could run a playbook, but the fastest
and easiest way to test Ansible is to run the ping command:

Running your

first playbook

https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html#inventory-basics-formats-hosts-and-groups
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html#inventory-basics-formats-hosts-and-groups

Managing PowerEdge servers through Redfish with Ansible

16 Dell PowerEdge: Getting Started with Redfish Ansible Modules

This command looks into the inventory file, searches for a group called lab, and runs an

Ansible ping command against each host. The Ansible ping command tests the connectivity to

the host to ensure that it can log in using the SSH key-based authentication. It then checks that

Python is installed on the host. This process ensures that all the pieces necessary for running

playbooks are properly configured.

Managing PowerEdge servers through Redfish with Ansible

The Redfish standard is a suite of specifications that deliver an industry-standard protocol

providing a RESTful interface for the management of servers.

Redfish can access iDRAC, which comes with every PowerEdge server. The iDRAC is a

baseboard management controller (BMC) that is responsible for providing out-of-band, low-level

management functions. Such functions include remotely rebooting a server, changing BIOS

settings, upgrading firmware, getting server component information, streaming telemetry, and

so on. The functionalities offered by the iDRAC can be accessed in various ways:

• HTML5 web interface

• IPMI

• SNMP

• Redfish

• SSH

• Racadm

In environments where IaC is the standard infrastructure management paradigm, Redfish is

gaining increasing traction due to its security features, standard RESTful API interface, and

integration with IaC management frameworks such as Ansible.

Our GitHub site, https://www.github.com/dell, includes a couple of repositories that are

dedicated to managing Dell PowerEdge servers using Redfish:

• iDRAC-Redfish-Scripting

• redfish-ansible-module

What is Redfish?

Dell Redfish

Ansible modules

https://www.github.com/dell
https://github.com/dell/iDRAC-Redfish-Scripting
https://github.com/dell/redfish-ansible-module

 Managing PowerEdge servers through Redfish with Ansible

17 Dell PowerEdge: Getting Started with Redfish Ansible Modules

This paper focuses on the redfish-ansible-module repository, which includes all the playbooks

that we discuss later in this paper. We recommend that you clone the redfish-ansible-module

repository, using git clone https://www.github.com/dell/redfish-ansible-

module, on the server, workstation, or virtual machine from which you are running Ansible.

The playbooks and roles defined in the repository use several community-supported Ansible

modules—in particular, the redfish_info, redfish_command, redfish_config, idrac_redfish_info,

idrac_redfish_command, and idrac_redfish_config modules. These modules are automatically

installed when you install the dellemc.openmanage collection.

Running any playbook from this repository requires a couple of configuration items to be set up

in the inventory file in the redfish-ansible-module directory. The repository comes with an

example of the inventory file, but the two configuration items required are:

• A group of hosts, with each host requiring defining of the baseuri variable:

[myhosts]

Host01 baseuri=idrac-host01

Host02 baseuri=idrac-host02

The baseuri variable must be set to the DNS entry for the iDRAC of the host. The

Redfish modules use the variable to connect to the iDRAC.

• iDRAC username and password for authentication. These items are typically set as group

variables so they can be used to connect to all the hosts in the group:

[myhosts:vars]

username=<username>

password=<password>

Because the inventory file contains plain text usernames and passwords, take care to set

the proper permission to avoid wrongful access.

After these configuration items are set, you can run playbooks. All the playbooks in this

repository store their results under the inventory_files directory in the home directory of

the user running the ansible-playbook command. The inventory_files directory

contains a subdirectory for each of the hosts the playbook runs against, with the result of the

playbook being stored in a JSON file.

The redfish-ansible-module repository comes with a myriad of playbook examples to

perform various tasks, such as getting the hardware inventory, power cycling, creating users,

enabling lockdown mode, and so on.

Here is the playbook to get the complete inventory of a server:

- hosts: myhosts

 connection: local

 name: Inventory

 gather_facts: False

 vars:

 ansible_python_interpreter: "/usr/bin/env python"

Getting

PowerEdge

server inventory

https://docs.ansible.com/ansible/latest/collections/community/general/redfish_info_module.html
https://docs.ansible.com/ansible/latest/collections/community/general/redfish_command_module.html
https://docs.ansible.com/ansible/latest/collections/community/general/redfish_config_module.html
https://docs.ansible.com/ansible/latest/collections/community/general/idrac_redfish_info_module.html
https://docs.ansible.com/ansible/latest/collections/community/general/idrac_redfish_command_module.html
https://docs.ansible.com/ansible/latest/collections/community/general/idrac_redfish_config_module.html

Managing PowerEdge servers through Redfish with Ansible

18 Dell PowerEdge: Getting Started with Redfish Ansible Modules

 datatype: SystemAll

 tasks:

 - name: Set output file

 include_tasks: create_output_file.yml

 - name: Get Inventory

 community.general.redfish_info:

 category: Systems

 command: all

 baseuri: "{{ baseuri }}"

 username: "{{ username}}"

 password: "{{ password }}"

 register: result

 - name: Copy results to output file

 ansible.builtin.copy:

 content: "{{ result | to_nice_json }}"

 dest: "{{ template }}.json"

This playbook proceeds as follows:

1. Looks for a list of hosts called myhosts in the inventory file supplied in the command line

2. Creates the output file according to the create_output_file.yml file

3. Runs the command all found in the community.general.redfish_info module in

the Systems category, using the supplied baseuri, username, and password

variables

4. Formats the result of the all command to JSON and stores it in a file named according

to the template variable, which is defined in the create_output_file.yml

Running the ansible-playbook -i <inventory file>

./get_system_inventory_all.yml command creates the following output:

 Managing PowerEdge servers through Redfish with Ansible

19 Dell PowerEdge: Getting Started with Redfish Ansible Modules

Looking at the output of the command, we can see that our inventory file contains two hosts:

zeus1053 and zeus1054. The result of the command against zeus1053 is stored under the

~/inventory_files/zeus1053 in a file called zeus1053_SystemAll_<timestamp>.json.

Similarly, the result for zeus1054 is stored under the ~/inventory_files/zeus1054 in a file

called zeus1054_SystemAll_<timestamp>.json.

Each JSON file contains the complete hardware inventory of the server, including the part

number of each memory DIMM, the component health status, and virtual disk information.

The playbooks interacting with the BIOS are stored in the redfish-ansible-

module/playbooks/bios directory. That directory includes playbooks to:

• Enable and disable PXE boot

• Get and set BIOS attributes

• Set the boot mode

• Reset default BIOS settings

• Set a one-time boot value, such as booting one time from virtual media to install a server

First, we get the current value of all the BIOS attributes on our servers by running the

get_bios_attributes.yml playbook:

All the BIOS attributes are stored in this file for zeus1053:

~/inventory_files/zeus1053/zeus1053_BiosAttributes_<timestamp>.json

Here is an extract from the file:

{

 "changed": false,

 "failed": false,

 "redfish_facts": {

Changing a BIOS

setting

Managing PowerEdge servers through Redfish with Ansible

20 Dell PowerEdge: Getting Started with Redfish Ansible Modules

 "bios_attribute": {

 "entries": [

 [

 {

 "system_uri":

"/redfish/v1/Systems/System.Embedded.1"

 },

 {

 "AcPwrRcvry": "Last",

 "AcPwrRcvryDelay": "Immediate",

 "AcPwrRcvryUserDelay": 60,

 "AesNi": "Enabled",

 "AgesaVersion": "MilanPI-SP3 1.0.0.2",

 "AmdMaxXgmiSpeed": "16GB",

 "ApbDis": "Disabled",

 "AssetTag": "",

 "AuthorizeDeviceFirmware": "Disabled",

 "BiosNvmeDriver": "DellQualifiedDrives",

 "BootMode": "Bios",

 "BootSeqRetry": "Enabled",

 "NumLock": "On",

 }

]

],

 "ret": true

 }

 }

}

In this section, we change two attributes in the BIOS: BootMode and NumLock. Changing

BootMode from bios to uefi is as simple as running the provided playbook, called

set_bootmode_uefi.yml, as follows:

 Managing PowerEdge servers through Redfish with Ansible

21 Dell PowerEdge: Getting Started with Redfish Ansible Modules

If we run the get_bios_attributes.yml playbook again, we can see that the BootMode

attribute is now set to Uefi:

{

 "changed": false,

 "failed": false,

 "redfish_facts": {

 "bios_attribute": {

 "entries": [

 [

 {

 "system_uri":

"/redfish/v1/Systems/System.Embedded.1"

 },

 {

 "AcPwrRcvry": "Last",

 "AcPwrRcvryDelay": "Immediate",

 "AcPwrRcvryUserDelay": 60,

 "AesNi": "Enabled",

 "AgesaVersion": "MilanPI-SP3 1.0.0.2",

 "AmdMaxXgmiSpeed": "16GB",

 "ApbDis": "Disabled",

 "AssetTag": "",

 "AuthorizeDeviceFirmware": "Disabled",

 "BiosNvmeDriver": "DellQualifiedDrives",

 "BootMode": "Uefi",

 "BootSeqRetry": "Enabled",

 "NumLock": "On",

 }

]

],

 "ret": true

 }

 }

}

The new value is set, and the change appears after the server reboots.

As you can see, changing the boot mode is easy because of the provided playbook. If you want

to change a value for which you do not have a specific playbook, you can create one. For

instance, to switch NumLock on and off, we have created a playbook called

set_bios_attribute.yml:

- hosts: myhosts

 connection: local

 name: Set BIOS attributes

 gather_facts: False

 vars:

 bios_attributes:

Managing PowerEdge servers through Redfish with Ansible

22 Dell PowerEdge: Getting Started with Redfish Ansible Modules

 SriovGlobalEnable: "Enabled"

 tasks:

 - name: Set BIOS attribute

 community.general.redfish_config:

 category: Systems

 command: SetBiosAttributes

 bios_attributes: "{{ bios_attributes}}"

 baseuri: "{{ baseuri }}"

 username: "{{ username }}"

 password: "{{ password }}"

 register: bios_attribute

 - name: Create BIOS configuration job (schedule BIOS setting update)

 community.general.idrac_redfish_command:

 category: Systems

 command: CreateBiosConfigJob

 baseuri: "{{ baseuri }}"

 username: "{{ username }}"

 password: "{{ password }}"

 when: bios_attribute.changed

 - name: Reboot system to apply new BIOS settings

 community.general.redfish_command:

 category: Systems

 command: PowerReboot

 baseuri: "{{ baseuri }}"

 username: "{{ username }}"

 password: "{{ password }}"

 when: bios_attribute.changed

The following section is what allows this playbook to change any BIOS attribute:

 vars:

 bios_attributes:

 SriovGlobalEnable: "Enabled"

That section creates a variable called bios_attributes with a value of

SriovGlobalEnable: “Enabled”. Changing a specific BIOS attribute is as simple as

changing the value of the bios_attributes variable. For instance, to set the NumLock to off,

change the preceding section to:

 vars:

 bios_attributes:

 NumLock: "Off"

After the change, the playbook file looks like this:

- hosts: myhosts

 connection: local

 Managing PowerEdge servers through Redfish with Ansible

23 Dell PowerEdge: Getting Started with Redfish Ansible Modules

 name: Set BIOS attributes

 gather_facts: False

 vars:

 bios_attributes:

 NumLock: "Off"

 tasks:

 - name: Set BIOS attribute

 community.general.redfish_config:

 category: Systems

 command: SetBiosAttributes

 bios_attributes: "{{ bios_attributes}}"

 baseuri: "{{ baseuri }}"

 username: "{{ username }}"

 password: "{{ password }}"

 register: bios_attribute

 - name: Create BIOS configuration job (schedule BIOS setting update)

 community.general.idrac_redfish_command:

 category: Systems

 command: CreateBiosConfigJob

 baseuri: "{{ baseuri }}"

 username: "{{ username }}"

 password: "{{ password }}"

 when: bios_attribute.changed

 - name: Reboot system to apply new BIOS settings

 community.general.redfish_command:

 category: Systems

 command: PowerReboot

 baseuri: "{{ baseuri }}"

 username: "{{ username }}"

 password: "{{ password }}"

 when: bios_attribute.changed

Changing a BIOS attribute is an asynchronous operation, meaning that the playbook returns

before the change is made because the playbook itself does not make the change. Instead, it

sets the new value and then creates a BIOS configuration job within the iDRAC. The

configuration job commits the new value to the BIOS. The new value is only visible after the

configuration job is completed and the server reboots.

As we wait for the job to be completed and the server to reboot, we can see that the NumLock

attribute is now set to Off:

{

 "changed": false,

 "failed": false,

 "redfish_facts": {

 "bios_attribute": {

Managing PowerEdge servers through Redfish with Ansible

24 Dell PowerEdge: Getting Started with Redfish Ansible Modules

 "entries": [

 [

 {

 "system_uri":

"/redfish/v1/Systems/System.Embedded.1"

 },

 {

 "AcPwrRcvry": "Last",

 "AcPwrRcvryDelay": "Immediate",

 "AcPwrRcvryUserDelay": 60,

 "AesNi": "Enabled",

 "AgesaVersion": "MilanPI-SP3 1.0.0.2",

 "AmdMaxXgmiSpeed": "16GB",

 "ApbDis": "Disabled",

 "AssetTag": "",

 "AuthorizeDeviceFirmware": "Disabled",

 "BiosNvmeDriver": "DellQualifiedDrives",

 "BootMode": "Uefi",

 "BootSeqRetry": "Enabled",

 "NumLock": "Off",

 }

]

],

 "ret": true

 }

 }

}

This example shows how you can use an Ansible playbook to change BIOS attributes across

many servers.

As shown by vulnerabilities such as Spectre and Meltdown, being able to apply firmware

upgrades in a timely fashion is critical to any IT infrastructure. Redfish and Ansible enable the

automation of firmware upgrades of any components, such as network cards, PERC RAID

cards, the server BIOS, or even the iDRAC itself. However, only a single firmware can be

updated at a time, so to upgrade multiple firmware, you must duplicate the upgrade tasks for

each of them.

In this example, we update the firmware of the PERC RAID controller by using the following

playbook. The playbook assumes that each host in the inventory defines the baseuri variable,

as previously described.

- hosts: testhosts

 name: Update firmware of PERC Card

 connection: local

 gather_facts: False

 vars:

 ansible_python_interpreter: "/usr/bin/env python"

Upgrading the

firmware of

server

components

 Managing PowerEdge servers through Redfish with Ansible

25 Dell PowerEdge: Getting Started with Redfish Ansible Modules

 retries_count: 180

 polling_interval: 5

 username: <iDRAC user>

 password: <iDRAC user password>

 reboot_uri:

"/redfish/v1/Systems/System.Embedded.1/Actions/ComputerSystem.Reset"

 perc_firmware: "/home/msanders/Downloads/SAS-

RAID_Firmware_6MTTK_WN64_52.16.1-4158_A05_01.EXE"

 collections:

 - dellemc.openmanage

 tasks:

 - name: "Upload new PERC firmware"

 redfish_firmware:

 baseuri: "{{ baseuri }}"

 username: "{{ username }}"

 password: "{{ password }}"

 image_uri: "{{ perc_firmware }}"

 validate_certs: no

 register: result

 - name: "Track PERC upload job to completion"

 uri:

 url: "https://{{ baseuri }}{{ result.task.uri }}"

 user: "{{ username }}"

 password: "{{ password }}"

 method: "GET"

 use_proxy: yes

 status_code: 200, 202

 return_content: yes

 validate_certs: no

 force_basic_auth: yes

 headers:

 Content-Type: "application/json"

 Accept: "application/json"

 register: job_result

 until: job_result.json.TaskState == 'Completed' or

job_result.json.TaskState == 'Starting'

 retries: "{{ retries_count }}"

 delay: "{{ polling_interval }}"

 - name: "Reboot the server to update PERC firmware"

 uri:

 url: "https://{{ baseuri }}{{ reboot_uri }}"

 user: "{{ username }}"

 password: "{{ password }}"

 method: "POST"

 body_format: raw

Managing PowerEdge servers through Redfish with Ansible

26 Dell PowerEdge: Getting Started with Redfish Ansible Modules

 body: '{"ResetType": "ForceRestart"}'

 use_proxy: yes

 status_code: 204

 return_content: no

 validate_certs: no

 force_basic_auth: yes

 headers:

 Content-Type: "application/json"

 Accept: "application/json"

 register: reboot_result

 changed_when: reboot_result.status == 204

 when: job_result.json.TaskState == 'Starting' and

job_result.json.Messages.0.Message == 'Task successfully scheduled.'

 - name: "Wait 5mins for PERC firmware to be applied"

 wait_for:

 timeout: 300

 when: job_result.json.TaskState == 'Starting' and

job_result.json.Messages.0.Message == 'Task successfully scheduled.'

 - name: "Track PERC firmware update job"

 uri:

 url: "https://{{ baseuri }}{{ result.task.uri }}"

 user: "{{ username }}"

 password: "{{ password }}"

 method: "GET"

 use_proxy: yes

 status_code: 200, 202

 return_content: yes

 validate_certs: no

 force_basic_auth: yes

 headers:

 Content-Type: "application/json"

 Accept: "application/json"

 register: final_result

 until: final_result.json.TaskState == 'Completed'

 retries: "{{ retries_count }}"

 delay: "{{ polling_interval }}"

 - name: "Fact from PERC firmware upgrade"

 set_fact:

 job_details: "{{ final_result.json }}"

 failed_when: final_result.json.TaskState == "Completed" and

final_result.json.TaskStatus != "OK"

 changed_when: final_result.json.TaskState == "Completed" and

final_result.json.TaskStatus == "OK"

A dissection of the playbook, starting with the vars section, follows:

 vars:

 ansible_python_interpreter: "/usr/bin/env python"

 Managing PowerEdge servers through Redfish with Ansible

27 Dell PowerEdge: Getting Started with Redfish Ansible Modules

 retries_count: 180

 polling_interval: 5

 username: <iDRAC user>

 password: <iDRAC user password>

 reboot_uri:

"/redfish/v1/Systems/System.Embedded.1/Actions/ComputerSystem.Reset"

 perc_firmware: "/home/user1/Downloads/SAS-

RAID_Firmware_6MTTK_WN64_52.16.1-4158_A05_01.EXE"

The retries_count and polling_interval variables are used when we have to wait for a

task to finish. The variable retries_count specifies how many times we want to retry, while

polling_interval specifies how often we should check to see if the task has finished.

Next, we define the username and password to be used to log in to the iDRAC.

After each firmware update, the server must be rebooted. If you are performing multiple

updates, defining a variable for the reboot URI can avoid significant typing and potential errors,

which is why we have defined the reboot_uri variable here.

The final variable is perc_firmware, which points to the firmware package on the host from

which the Ansible playbook will run. Firmware for PowerEdge servers is offered in either a .BIN

package or a .EXE package. If you perform updates through the iDRAC web interface, the .BIN

package must be used, but for updates performed using Redfish, the .EXE is required.

The required tasks to update the firmware are as follows:

• Task #1:

 - name: "Upload new PERC firmware"

 redfish_firmware:

 baseuri: "{{ baseuri }}"

 username: "{{ username }}"

 password: "{{ password }}"

 image_uri: "{{ perc_firmware }}"

 validate_certs: no

 register: result

This task starts a job to upload the firmware to the iDRAC. Depending on the size of the

package and the speed of the network, this task can take a few minutes; however, it

starts the job and returns as soon the job is started.

• Task #2:

- name: "Track PERC upload job to completion"

 uri:

 url: "https://{{ baseuri }}{{ result.task.uri }}"

 user: "{{ username }}"

 password: "{{ password }}"

 method: "GET"

 use_proxy: yes

 status_code: 200, 202

 return_content: yes

 validate_certs: no

Managing PowerEdge servers through Redfish with Ansible

28 Dell PowerEdge: Getting Started with Redfish Ansible Modules

 force_basic_auth: yes

 headers:

 Content-Type: "application/json"

 Accept: "application/json"

 register: job_result

 until: job_result.json.TaskState == 'Completed' or

job_result.json.TaskState == 'Starting'

 retries: "{{ retries_count }}"

 delay: "{{ polling_interval }}"

Because the previous task starts the upload job but does not wait for the job to be

finished before returning, this task performs the necessary work of checking the status

of the job. It polls the specified URI at every polling_interval until the number of

retries equals retries_count or until the state of the job running on the iDRAC is

either ‘Completed’ or ‘Starting’. If the number of retries is reached and the state

of the job is neither ‘Completed’ nor ‘Starting’, the task fails.

• Task #3:

 - name: "Reboot the server to update PERC firmware"

 uri:

 url: "https://{{ baseuri }}{{ reboot_uri }}"

 user: "{{ username }}"

 password: "{{ password }}"

 method: "POST"

 body_format: raw

 body: '{"ResetType": "ForceRestart"}'

 use_proxy: yes

 status_code: 204

 return_content: no

 validate_certs: no

 force_basic_auth: yes

 headers:

 Content-Type: "application/json"

 Accept: "application/json"

 register: reboot_result

 changed_when: reboot_result.status == 204

 when: job_result.json.TaskState == 'Starting' and

job_result.json.Messages.0.Message == 'Task successfully

scheduled.'

After the firmware update job is started on the iDRAC, the server must reboot before the

Lifecycle Controller performs the update. The next task is to reboot the server.

• Task #4:

 - name: "Wait 5mins for PERC firmware to be applied"

 wait_for:

 timeout: 300

 when: job_result.json.TaskState == 'Starting' and

job_result.json.Messages.0.Message == 'Task successfully

scheduled.'

 Managing PowerEdge servers through Redfish with Ansible

29 Dell PowerEdge: Getting Started with Redfish Ansible Modules

Task #4 and task #5 are similar in that they are both waiting for the new firmware to be

applied. We could have removed task #4 and started polling the server immediately, but

instead we wait for 5 minutes before starting to poll the server. We take this approach

because we know that the rebooting of the server and applying the new firmware will take

some time. Depending on the server, this wait time could be adjusted or even removed.

• Task #5:

 - name: "Track PERC firmware update job"

 uri:

 url: "https://{{ baseuri }}{{ result.task.uri }}"

 user: "{{ username }}"

 password: "{{ password }}"

 method: "GET"

 use_proxy: yes

 status_code: 200, 202

 return_content: yes

 validate_certs: no

 force_basic_auth: yes

 headers:

 Content-Type: "application/json"

 Accept: "application/json"

 register: final_result

 until: final_result.json.TaskState == 'Completed'

 retries: "{{ retries_count }}"

 delay: "{{ polling_interval }}"

As with task #2, this task polls the server to get the status of the iDRAC job and ensure

that it is completed. It polls the specified URI at every polling_interval until the

number of retries equals retries_count or until the state of the job running on the

iDRAC is either ‘Completed’ or ‘Starting’. If the number of retries is reached and

the state of the job is neither ‘Completed’ nor ‘Starting’, the task fails.

• Task #6:

 - name: "Fact from PERC firmware upgrade"

 set_fact:

 job_details: "{{ final_result.json }}"

 failed_when: final_result.json.TaskState == "Completed"

and final_result.json.TaskStatus != "OK"

 changed_when: final_result.json.TaskState == "Completed"

and final_result.json.TaskStatus == "OK"

This task gathers the facts of the previous tasks and show whether the update finished

successfully or not.

This section describes how to use Ansible and Redfish to automate operating system

deployment on a PowerEdge server. The example shows how to connect the virtual media to

the server and have the server boot from it.

Operating

system

deployment

Managing PowerEdge servers through Redfish with Ansible

30 Dell PowerEdge: Getting Started with Redfish Ansible Modules

Note: Details about the installation of the operating system and its automation are operating-system

dependent and are outside the scope of this paper.

Note: The playbook assumes that an ISO file containing the operating system installer has been

downloaded and is available on an NFS or CIFS share. Downloading the ISO file and the creation of the

NFS share are outside the scope of this paper.

In our example, we boot from an Ubuntu installation ISO. We assume that each host entry in

the inventory file includes the baseuri variable, pointing to the iDRAC IP address for each

server. We also assume that each host entry in the inventory file includes idrac_user and

idrac_password variables containing the credentials to authenticate against the iDRAC.

- hosts: labhosts

 name: Install ubuntu 20.04.4

 gather_facts: False

 vars:

 ansible_python_interpreter: "/usr/bin/env python3"

 idrac_osd_command_allowable_values: ["BootToNetworkISO",

"GetAttachStatus", "DetachISOImage"]

 idrac_osd_command_default: "GetAttachStatus"

 GetAttachStatus_Code:

 DriversAttachStatus:

 "0": "NotAttached"

 "1": "Attached"

 ISOAttachStatus:

 "0": "NotAttached"

 "1": "Attached"

 idrac_https_port: 443

 expose_duration: 1080

 command: "{{ idrac_osd_command_default }}"

 validate_certs: no

 force_basic_auth: yes

 share_name: nfsserver:/home/user1/share

 ubuntu_iso: ubuntu-20.04.4-live-server-amd64.iso

 collections:

 - dellemc.openmanage

 tasks:

 - name: find the URL for the DellOSDeploymentService

 ansible.builtin.uri:

 url:

"https://{{ baseuri }}/redfish/v1/Systems/System.Embedded.1"

 user: "{{ idrac_user }}"

 password: "{{ idrac_password }}"

 method: GET

 headers:

 Accept: "application/json"

 Managing PowerEdge servers through Redfish with Ansible

31 Dell PowerEdge: Getting Started with Redfish Ansible Modules

 OData-Version: "4.0"

 status_code: 200

 validate_certs: "{{ validate_certs }}"

 force_basic_auth: "{{ force_basic_auth }}"

 register: result

 delegate_to: localhost

 - name: find the URL for the DellOSDeploymentService

 ansible.builtin.set_fact:

 idrac_osd_service_url:

"{{ result.json.Links.Oem.Dell.DellOSDeploymentService['@odata.id'] }}

"

 when:

 - result.json.Links.Oem.Dell.DellOSDeploymentService is

defined

 - block:

 - name: get ISO attach status

 ansible.builtin.uri:

 url:

"https://{{ baseuri }}{{ idrac_osd_service_url }}/Actions/DellOSDeploy

mentService.GetAttachStatus"

 user: "{{ idrac_user }}"

 password: "{{ idrac_password }}"

 method: POST

 headers:

 Accept: "application/json"

 Content-Type: "application/json"

 OData-Version: "4.0"

 body: "{}"

 status_code: 200

 validate_certs: "{{ validate_certs }}"

 force_basic_auth: "{{ force_basic_auth }}"

 register: attach_status

 delegate_to: localhost

 - name: set ISO attach status as a fact variable

 ansible.builtin.set_fact:

 idrac_iso_attach_status: "{{ idrac_iso_attach_status |

default({}) | combine({item.key: item.value}) }}"

 with_dict:

 DriversAttachStatus:

"{{ attach_status.json.DriversAttachStatus }}"

 ISOAttachStatus:

"{{ attach_status.json.ISOAttachStatus }}"

 when:

 - idrac_osd_service_url is defined

 - idrac_osd_service_url|length > 0

Managing PowerEdge servers through Redfish with Ansible

32 Dell PowerEdge: Getting Started with Redfish Ansible Modules

 - block:

 - name: detach ISO image if attached

 ansible.builtin.uri:

 url:

"https://{{ baseuri }}{{ idrac_osd_service_url }}/Actions/DellOSDeploy

mentService.DetachISOImage"

 user: "{{ idrac_user }}"

 password: "{{ idrac_password }}"

 method: POST

 headers:

 Accept: "application/json"

 Content-Type: "application/json"

 OData-Version: "4.0"

 body: "{}"

 status_code: 200

 validate_certs: "{{ validate_certs }}"

 force_basic_auth: "{{ force_basic_auth }}"

 register: detach_status

 delegate_to: localhost

 - ansible.builtin.debug:

 msg: "Successfuly detached the ISO image"

 when:

 - idrac_osd_service_url is defined and

idrac_osd_service_url|length > 0

 - idrac_iso_attach_status

 - idrac_iso_attach_status.ISOAttachStatus == "Attached" or

 idrac_iso_attach_status.DriversAttachStatus == "Attached"

 - name: boot to network ISO

 dellemc.openmanage.idrac_os_deployment:

 idrac_ip: "{{ baseuri }}"

 idrac_user: "{{ idrac_user }}"

 idrac_password: "{{ idrac_password }}"

 share_name: "{{ share_name }}"

 iso_image: "{{ ubuntu_iso }}"

 expose_duration: "{{ expose_duration }}"

 validate_certs: False

 register: boot_to_network_iso_status

 delegate_to: localhost

A dissection of this playbook, except for the self-explanatory variable section, follows:

• Task number 1:

 - name: find the URL for the DellOSDeploymentService

 ansible.builtin.uri:

 url:

"https://{{ baseuri }}/redfish/v1/Systems/System.Embedded.1"

 user: "{{ idrac_user }}"

 Managing PowerEdge servers through Redfish with Ansible

33 Dell PowerEdge: Getting Started with Redfish Ansible Modules

 password: "{{ idrac_password }}"

 method: GET

 headers:

 Accept: "application/json"

 OData-Version: "4.0"

 status_code: 200

 validate_certs: "{{ validate_certs }}"

 force_basic_auth: "{{ force_basic_auth }}"

 register: result

 delegate_to: localhost

 - name: find the URL for the DellOSDeploymentService

 ansible.builtin.set_fact:

 idrac_osd_service_url:

"{{ result.json.Links.Oem.Dell.DellOSDeploymentService['@odata.i

d'] }}"

 when:

 - result.json.Links.Oem.Dell.DellOSDeploymentService is

defined

The first task is to get the Redfish URI for the operating system deployment service on

the PowerEdge server. That URI is Dell specific, which is why it is in the OEM schema

within Redfish. The URI is used in subsequent tasks to ascertain if an ISO image is

already attached to the server.

• Task #2:

 - block:

 - name: get ISO attach status

 ansible.builtin.uri:

 url:

"https://{{ baseuri }}{{ idrac_osd_service_url }}/Actions/DellOS

DeploymentService.GetAttachStatus"

 user: "{{ idrac_user }}"

 password: "{{ idrac_password }}"

 method: POST

 headers:

 Accept: "application/json"

 Content-Type: "application/json"

 OData-Version: "4.0"

 body: "{}"

 status_code: 200

 validate_certs: "{{ validate_certs }}"

 force_basic_auth: "{{ force_basic_auth }}"

 register: attach_status

 delegate_to: localhost

 - name: set ISO attach status as a fact variable

 ansible.builtin.set_fact:

 idrac_iso_attach_status: "{{ idrac_iso_attach_status

| default({}) | combine({item.key: item.value}) }}"

Managing PowerEdge servers through Redfish with Ansible

34 Dell PowerEdge: Getting Started with Redfish Ansible Modules

 with_dict:

 DriversAttachStatus:

"{{ attach_status.json.DriversAttachStatus }}"

 ISOAttachStatus:

"{{ attach_status.json.ISOAttachStatus }}"

 when:

 - idrac_osd_service_url is defined

 - idrac_osd_service_url|length > 0

In this task, we use the URI found through task #1 to get the ISO attach status for the

variable. To that end, we query the DellOSDeploymentService.GetAttachStatus

endpoint and determine if an ISO image is already attached.

• Task #3:

 - block:

 - name: detach ISO image if attached

 ansible.builtin.uri:

 url:

"https://{{ baseuri }}{{ idrac_osd_service_url }}/Actions/DellOS

DeploymentService.DetachISOImage"

 user: "{{ idrac_user }}"

 password: "{{ idrac_password }}"

 method: POST

 headers:

 Accept: "application/json"

 Content-Type: "application/json"

 OData-Version: "4.0"

 body: "{}"

 status_code: 200

 validate_certs: "{{ validate_certs }}"

 force_basic_auth: "{{ force_basic_auth }}"

 register: detach_status

 delegate_to: localhost

 - ansible.builtin.debug:

 msg: "Successfuly detached the ISO image"

 when:

 - idrac_osd_service_url is defined and

idrac_osd_service_url|length > 0

 - idrac_iso_attach_status

 - idrac_iso_attach_status.ISOAttachStatus == "Attached"

or

 idrac_iso_attach_status.DriversAttachStatus ==

"Attached"

This task is optional but could be considered a safety measure. It detaches any ISO

image that is already attached to the server, which ensures that the server does not boot

from the wrong ISO image. In task #2, we created two facts (also known as variables):

 Managing PowerEdge servers through Redfish with Ansible

35 Dell PowerEdge: Getting Started with Redfish Ansible Modules

DriverAttachStatus and ISOAttachStatus. Task #3 runs only if the status of

either of these variables is ‘Attached’, meaning that an image is already attached to

the server. If an image is attached, we detach it because the next task attaches the

required ISO to the server.

• Task #4:

 - name: boot to network ISO

 dellemc.openmanage.idrac_os_deployment:

 idrac_ip: "{{ baseuri }}"

 idrac_user: "{{ idrac_user }}"

 idrac_password: "{{ idrac_password }}"

 share_name: "{{ share_name }}"

 iso_image: "{{ ubuntu_iso }}"

 expose_duration: "{{ expose_duration }}"

 validate_certs: False

 register: boot_to_network_iso_status

 delegate_to: localhost

This task is where we boot the server from the ISO image. This task uses the

dellemc.openmanage Ansible module. The idrac_os_deployment function within that

module performs multiple actions on the iDRAC:

▪ Attaches the ISO image—an Ubuntu 20.04.4 ISO image in this example—on the

share_name to the iDRAC. The image is exposed to the server for a duration of

expose_duration.

▪ Sets the boot device as being the mounted ISO image.

▪ Reboots the server.

At the end of these tasks, the server boots from the ISO image and launches the operating

system installer that is stored on the image. You can also use Ansible to automate operating

system installation. That process is operating-system dependent and outside the scope of this

paper.

Getting help

36 Dell PowerEdge: Getting Started with Redfish Ansible Modules

Getting help

The Dell Github repositories are regularly updated with new and updated playbooks. We

recommend that you always clone the latest repository before running critical tasks. If you

experience any issue with any of the content in the various repositories, report the issue

through Github.

The Dell Community pages are a great place to exchange ideas and to get help. Developers

and Technical Marketing Engineering team members monitor these pages, which provide the

ideal platform for discussions on using the content provided by Dell Technologies.

Should you run into issues with the Ansible modules for Redfish, Customer Support is on hand

to troubleshoot any issues and can escalate to development if necessary.

The Ansible Project on Google Groups is a great resource to help new and experienced Ansible

users get the most out of their automation. The forums are an open arena where like-minded

individuals can benefit from a global talent pool.

Dell Github

Dell Community

pages

Dell Customer

Support

Ansible forum on

Google Groups

https://github.com/dell
https://www.dell.com/community/Automation/bd-p/Automation
https://groups.google.com/g/ansible-project?pli=1

 Summary

37 Dell PowerEdge: Getting Started with Redfish Ansible Modules

Summary

This paper describes how to install Ansible, create Ansible playbooks, and use Redfish to

automate system management activity on PowerEdge servers. You can use those technologies

in conjunction to enable IaC within an IT environment. Ansible and Redfish technologies require

no additional licensing.

By automating tasks using Ansible and Redfish with PowerEdge servers, customers can lower

the resource and time requirements for managing compute infrastructure of any size. Such

automation also increases uptime of applications and overall infrastructure by decreasing

potential human errors.

With Ansible and Redfish, deploying new PowerEdge servers or updating existing PowerEdge

servers takes minutes, instead of days or weeks. Automating deployment and updates with

Ansible and Redfish allows system administrators to focus on tasks that add value to their

organization, instead of spending cycles keeping the lights on.

References

38 Dell PowerEdge: Getting Started with Redfish Ansible Modules

References

The following Dell Technologies resources provide additional information related to this

document. Access to documents depends on your login credentials. If you do not have access

to a document, contact your Dell Technologies representative.

• Dell Technologies DevOps Community Pages

• Dell Technologies Developer Portal

• Dell Technologies Redfish API documentation

• Dell Technologies iDRAC documentation

• Dell Technologies DevOps

See also the following Red Hat Ansible documentation:

• Ansible User Guide

• Ansible Sample Code

• Ansible Forums on Google Groups

• Blog – Introduction to Ansible builder

• Blog – Using Ansible and tower with shared roles

The following book is also useful when learning Ansible:

Ansible for DevOps: Server and configuration management for humans – Jeff Geerling, ISBN

978-0-9863934-3-3

Dell

Technologies

documentation

Red Hat Ansible

documentation

Other resources

https://www.dell.com/community/Devops/ct-p/Devops
https://developer.dell.com/
https://developer.dell.com/apis/2978/versions/5.xx
https://www.dell.com/support/manuals/en-us/poweredge-r650/idrac9_5.00.00.00_ug/overview-of-idrac?guid=guid-a03c2558-4f39-40c8-88b8-38835d0e9003&lang=en-us
https://www.dell.com/support/manuals/en-us/poweredge-r650/idrac9_5.00.00.00_ug/overview-of-idrac?guid=guid-a03c2558-4f39-40c8-88b8-38835d0e9003&lang=en-us
https://www.delltechnologies.com/en-mk/solutions/devops/index.htm
https://docs.ansible.com/ansible/latest/user_guide/index.html
https://github.com/ansible/ansible-examples
https://groups.google.com/g/ansible-project
https://www.ansible.com/blog/introduction-to-ansible-builder
https://www.ansible.com/blog/using-ansible-and-ansible-tower-with-shared-roles
https://www.ansible.com/blog/using-ansible-and-ansible-tower-with-shared-roles

